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Figure 1: Camera Pose Estimation with PoseDiffusion. We present a method to predict the camera parameters (extrinsics
and intriniscs) for a given collection of scene images. Our model combines the strengths of traditional epipolar constraints
from point correspondences with the power of diffusion models to iteratively refine an initially random set of poses.

Abstract

Camera pose estimation is a long-standing computer vi-
sion problem that to date often relies on classical meth-
ods, such as handcrafted keypoint matching, RANSAC and
bundle adjustment. In this paper, we propose to formulate
the Structure from Motion (SfM) problem inside a proba-
bilistic diffusion framework, modelling the conditional dis-
tribution of camera poses given input images. This novel
view of an old problem has several advantages. (i) The na-
ture of the diffusion framework mirrors the iterative proce-
dure of bundle adjustment. (ii) The formulation allows a
seamless integration of geometric constraints from epipo-
lar geometry. (iii) It excels in typically difficult scenar-
ios such as sparse views with wide baselines. (iv) The

method can predict intrinsics and extrinsics for an arbi-
trary amount of images. We demonstrate that our method
PoseDiffusion significantly improves over the classic SfM
pipelines and the learned approaches on two real-world
datasets. Finally, it is observed that our method can gener-
alize across datasets without further training. Project page:
https://posediffusion.github.io/

1. Introduction
Camera pose estimation, i.e. extracting the camera in-

trinsics and extrinsics given a set of free-form multi-view
scene-centric images (e.g. tourist photos of Rome [2]), is a
traditional Computer Vision problem with a history stretch-
ing long before the inception of modern computers [21].

https://posediffusion.github.io/


It is a crucial task in various applications, including aug-
mented and virtual reality, and has recently regained the at-
tention of the research community due to the emergence of
implicit novel-view synthesis methods [32, 40, 25].

The classic dense pose estimation task estimates the pa-
rameters of many cameras with overlapping frusta, leverag-
ing correspondence pairs between keypoints visible across
images. It is typically addressed through a Structure-from-
Motion (SfM) framework, which not only estimates the
camera pose (Motion), but also extracts the 3D shape of the
observed scene (Structure). During the last 30 years, SfM
pipelines matured into a technology capable of reconstruct-
ing thousands [2] if not millions [15] of free-form views.

Surprisingly, the dense-view SfM pipeline [43] has re-
mained mostly unchanged till today, even though indi-
vidual components have incorporated deep learning ad-
vances [9, 42, 18, 51, 55, 24]. SfM first estimates reli-
able image-to-image correspondences and, later, uses Bun-
dle Adjustment (BA) to align all cameras into a common
scene-consistent reference frame. Due to the significant
complexity of the BA optimization landscape, a modern
SfM pipeline [46] comprises a carefully engineered itera-
tive process which alternates between expanding the set of
registered poses and executing a precise second-order BA
optimizer [1].

With the recent proliferation of deep geometry learn-
ing, the sparse pose problem, operating on a significantly
smaller number of input views separated by wide base-
lines, has become of increasing interest. For many years,
this sparse setting has been the Achilles’ Heel of traditional
pose estimation methods. Recently, RelPose [63] leveraged
a deep network to implicitly learn the bundle-adjustment
prior from a large dataset of images and corresponding cam-
era poses. The method has demonstrated performance supe-
rior to SfM in settings with less than ten input frames. How-
ever, in the many-image case, its accuracy cannot match the
precise solution of the second-order BA optimizer from iter-
ative SfM. Besides, it is limited to predicting rotations only.

In this paper, we propose PoseDiffusion - a novel camera
pose estimation approach that elegantly marries deep learn-
ing with correspondence-based constraints and therefore, is
able to reconstruct camera positions at high accuracy both
in the sparse-view and dense-view regimes.

PoseDiffusion introduces a diffusion framework to solve
the bundle adjustment problem by modeling the probability
p(x|I) of camera parameters x given observed images I.
Following the recent successes of diffusion models in mod-
elling complex distributions (e.g. over images [16], videos
[47], and point clouds [28]), we leverage diffusion mod-
els to learn p(x|I) from a large dataset of images with
known camera poses. Once learned, given a previously un-
seen sequence, we estimate the camera poses x by sampling
p(x|I). Mildly assuming that p(x|I) forms a near-delta dis-

tribution, any sample from p(x|I) will yield a valid pose
and, hence, a maximum a posteriori probability (MAP) es-
timate is not needed. The stochastic sampling process of
diffusion models has been shown to efficiently navigate the
log-likelihood landscape of complex distributions [16], and
hence is a perfect fit for the intricate BA optimization. An
additional benefit of the diffusion process is that it can be
trained one step at a time without the need for unrolling
gradients through the whole optimization.

Additionally, in order to increase the precision of our
camera estimates, we guide the sampling process with tra-
ditional epipolar constraints expressed by means of reliable
2D image-to-image correspondences, which is inspired by
classifier diffusion guidance [10]. We use this classical con-
straint to bias samples towards more geometrically consis-
tent solutions throughout the sampling process, arriving at
a more precise camera estimation.

PoseDiffusion shows State-of-the-Art accuracy on the
object centric scenes of the CO3Dv2 dataset [40], as well as
on outdoor/indoor scenes of RealEstate10k [64]. Crucially,
PoseDiffusion also outperforms SfM methods when used to
supervise the training of a popular implicit shape and ap-
pearance learning method NeRF [32], which demonstrates
the superior accuracy of both the extrinsic and intrinsic es-
timates.

2. Related Work

As camera pose estimation is a fundamental task in Com-
puter Vision, the literature is vast with countless down-
stream applications. Thus, here, we will highlight the most
relevant work from classical approaches to current methods
with a focus on our setting: low number of input frames.

Geometric Pose Estimation. The technique of estimat-
ing camera poses given image-to-image point correspon-
dences has been extensively explored in the last three
decades [13, 38]. This process typically begins with key-
point detection, conducted by handcrafted methods like
SIFT [26, 27] and SURF [3], or alternatively, learned meth-
ods [9, 61]. The correspondences can then be established
using a nearest neighbour search or learned matchers [42,
31, 62]. Given these correspondences, five-point or eight-
point algorithms compute camera poses [13, 14, 22, 37]
with the help of RANSAC and its variants [11, 4, 5]. Typ-
ically, Bundle Adjustment [52] further optimizes the cam-
era poses–often with higher-order optimization techniques.
The entire pipeline, from keypoint detection to bundle ad-
justment, is highly interdependent and needs careful tuning
to be sufficiently robust, which allows for scaling to thou-
sands of images [12, 41]. COLMAP [46, 48] is an open-
source implementation of the whole camera pose estimation
procedure and has become a valuable asset to the commu-
nity.
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Figure 2: PoseDiffusion overview. Training is supervised given a multi-view dataset of images and camera poses to learn
a diffusion model Dθ to model p(x | I). During inference the reverse diffusion process is guided through the gradient that
minimizes the Sampson Epipolar Error between image pairs, optimizing geometric consistency between poses.

Learned Pose Estimation. Geometric pose estimation
techniques struggle when only few image-to-image matches
can be established, or more generally, in a setting with
sparse views and wide baselines [8]. Thus, instead of con-
structing geometric constraints on top of potentially unreli-
able point matches, learning-based approaches directly es-
timate the camera motion between frames. Learning can be
driven by ground truth annotations [39] or unsupervisedly
through reprojecting points from one frame to another, mea-
suring photometric reconstruction [53, 51]. Learned meth-
ods that directly predict the relative transformation between
camera poses are often category-specific or object cen-
tric [19, 60, 30, 59, 58]. Only recently, RelPose [63] showed
category-agnostic camera pose estimation, however, is lim-
ited to predicting rotations.

PoseDiffusion combines the advantages of both geomet-
ric and learned pose estimators in a seamless way. It can
thus learn a category-agnostic model to predict rotation,
translation, and intrinsics for an arbitrary set of images.
Diffusion Models. Diffusion models are a category of
generative models that, inspired by non-equilibrium ther-
modynamics [49], approximate the data distribution by a
Markov Chain of diffusion steps. Recently, they have
shown impressive results on image [50, 16], video [47, 17],
and even 3D point cloud [28, 29] generation. Their abil-
ity to accurately generate diverse high-quality samples has
marked them as a promising tool in various fields.

3. PoseDiffusion
Problem setting. We consider the problem of estimating
intrinsic and extrinsic camera parameters given correspond-
ing images of a single scene (e.g. frames from an object-
centric video, or free-form pictures of a scene).

Formally, given a tuple I =
(
Ii
)N
i=1

of N ∈ N in-
put images Ii ∈ R3×H×W , we seek to recover the tuple

x =
(
xi
)N
i=1

of corresponding camera parameters xi =

(Ki, gi) consisting of intrinsics Ki ⊂ R3×3 and extrinsics
gi ∈ SE(3) respectively. We defer the details of the camera
parametrization to Sec. 3.4.

Extrinsics gi map a 3D point pw ∈ R3 from world co-
ordinates to a 3D point pc ∈ R3 = gi(pw) in camera co-
ordinates. Intrinsics Ki perspectivelly project this camera
point pc to a 2D point ps ∈ R2 in the screen coordinates
with Kipc ∼ λ[ps; 1], λ ∈ R where “∼” indicates homo-
geneous equivalence.

3.1. Preliminaries of Diffusion Model

Diffusion models [16, 49, 50] are a class of likelihood-
based models. They aim to learn a complex data distribution
by capturing the inverse of a diffusion process from data to a
simple distribution, usually through a noising and denoising
process. The noising process gradually converts the data
sample x into noise by a sequence of T ∈ N steps. The
model is then trained to learn the denoising process.

The Denoising Diffusion Probabilistic Model (DDPM)
specifically defines the noising process to be Gaussian.
Given a variance schedule β1, ..., βT of T steps, the nois-
ing transitions are defined as follows:

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI). (1)

The variance schedule is set so that xT follows an
isotropic Gaussian distribution, i.e., q(xT ) ≈ N (0, I). De-
fine αt = 1 − βt and ᾱt =

∏t
i=1 αi, then a closed-form

solution [16] exists to directly sample xt given a datum x0:

xt ∼ q(xt | x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (2)

The reverse pθ(xt−1|xt) is still Gaussian if βt is small
enough. Therefore, we can approximate it by a model Dθ:

pθ(xt−1 | xt) = N (xt−1;
√
αtDθ(xt, t), (1− αt)I). (3)
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3.2. Diffusion-aided Bundle Adjustment

PoseDiffusion models the conditional probability distri-
bution p(x | I) of the samples x (i.e. camera parameters)
given the images I. Following the diffusion framework [49]
(discussed above), we model p(x | I) by means of the de-
noising process. More specifically, p(x | I) is first esti-
mated by training a diffusion model Dθ on a large training
set T = {(xj , Ij)}Sj=1 of S ∈ N scenes with ground truth
image batches Ij and their camera parameters xj . At in-
ference time, for a new set of observed images I, we sam-
ple p(x | I) in order to estimate the corresponding cam-
era parameters x. Note that, unlike for the noising process
(Eq. (1)) which is independent of I, the denoising process is
conditioned on the input image set I, i.e., pθ(xt−1 | xt, I):

pθ(xt−1|xt, I) = N (xt−1;
√
αtDθ(xt, t, I), (1− αt)I).

(4)

Denoiser Dθ. We implement the denoiser Dθ as a Trans-
former Trans [54], where

Dθ(xt, t, I) = Trans
[(

cat(xit, t, ψ(I
i)
)N
i=1

]
=

(
xit−1

)N
i=1

.

(5)
Here, Trans accepts a sequence of tuples of noisy poses
xit, diffusion time t, and feature embeddings ψ(Ii) ∈ RDψ

of the input images Ii. The denoiser outputs the tuple of
corresponding camera parameters (xit−1)

N
i=1. The feature

embeddings come from a vision transformer model, which
is initialized by the pre-trained weights of DINO [6]).

At train time, Dθ(xt, t, I) is supervised with the follow-
ing denoising loss:

Ldiff = Et∼[1,T ],xt∼q(xt|x0,I)∥Dθ(xt, t, I)− x0∥2, (6)

where the expectation aggregates over all diffusion time-
steps t, the corresponding diffused samples xt ∼
q(xt|x0, I), and a training set T = {(x0,j , Ij)}Sj=1 of
S ∈ N scenes with images Ij and their cameras xj .

Solving Bundle Adjustment by Sampling pθ. The
trained denoiser Dθ (Eq. (6)) is later leveraged to sample
pθ(x|I) which effectively solves our task of inferring cam-
era parameters x given input images I.

In more detail, following DDPM sampling [16], we start
from random cameras xT ∼ N (0, I) and, in each iteration
t ∈ (T, ..., 0), the next step xt−1 is sampled from

xt−1 ∼ N (xt−1;
√
ᾱt−1Dθ(xt, t, I), (1− ᾱt−1)I). (7)

3.3. Geometry-Guided sampling

So far, our feed-forward network maps images directly
to the space of camera parameters. Since deep networks
are notoriously bad at regressing precise quantities, such
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Figure 3: Inference. For each step t, Geometry-Guided
Sampling (GGS) samples the distribution pθ(xt−1 | xt, I, t)
of refined cameras xt−1 conditioned on input images I and
the previous estimate xt, while being guided by the gradient
of the Sampson matching density p(I | x).

as camera translation vectors or angles of rotation matri-
ces [20], we significantly increase the accuracy of PoseDif-
fusion by leveraging two-view geometry constraints which
form the backbone of state-of-the-art SfM methods.

To this end, we extract reliable 2D correspondences
between scene images and guide DDPM sampling iter-
ations (Eq. (7)) so that the estimated poses satisfy the
corresondence-induced two-view epipolar constraints.

Sampson Epipolar Error. Specifically, let P ij =

{(pi
k,p

j
k)}

NPij
k=1 denote a set of 2D correspondences be-

tween image points pk ∈ R2 for a pair of scene im-
ages (Ii, Ij), and denote (xi, xj) the corresponding camera
poses. Given the latter, we evaluate the compatibility be-
tween the cameras and the 2D correspondences via a robust
version of Sampson Epipolar Error eij ∈ R [13]:

eij(xi, xj , P ij) =

|P ij |∑
k=1

[
p̃j⊤
k F ijp̃i

k

(F ijp̃i
k)

2
1 + (F ijp̃i

k)
2
2 + (F ij⊤p̃j

k)
2
1 + (F ij⊤p̃j

k)
2
2

]
ϵ

,

where p̃ = [p; 1] denotes p in homogeneous coordi-
nates, [z]ϵ = min(z, ϵ) is a robust clamping function, and
F ij ∈ R3×3 is the Fundamental Matrix [13] mapping points
pi
k from image Ii to lines in image Ij and vice-versa. Di-

rectly optimizing the epipolar constraint p̃j⊤
k F ijp̃i

k usually
provides sub-optimal results [13], which is also observed in
our experiments.

Sampson-guided sampling We follow the classifier dif-
fusion guidance [10] to guide the sampling towards a solu-
tion which minimizes the Sampson Epipolar Error and, as
such, satisfies the image-to-image epipolar constraint.

In each sampling iteration, classifier guidance perturbs
the predicted mean µt−1 = Dθ(xt, t, I) with a gradient of
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Figure 4: Pose estimation on CO3Dv2. Estimated cameras given input images I (first row). Our PoseDiffusion (2nd row) is
compared to RelPose (3rd row), COLMAP+SPSG (4th row), and the ground truth. Missing cameras indicate failure.

xt-conditioned guidance distribution p(I|xt):

D̂θ(xt, t, I) = Dθ(xt, t, I) + s∇xt log p(I|xt), (8)

where s ∈ R is a scalar controlling the strength of the guid-
ance. D̂θ(xt, t, I) then replaces Dθ(xt, t, I) in Eq. (4).

Assuming a uniform prior over cameras x allows model-
ing p(I|xt) as a product of independent exponential distri-
butions over the pairwise Sampson Errors eij :

p(I|xt) =
∏
i,j

p(Ii, Ij |xit, xjt ) ∝
∏
i,j

exp(−eij). (9)

Note that our choice of p(I|xt) is meaningful since its mode
is attained when Sampson Errors between all image pairs is
0 (i.e. all epipolar constraints are satisfied). This allows us
to ground the diffusion process by classic point matching.

3.4. Details

Representation details. We represent the extrinsics gi =
(qi, ti) as a 2-tuple comprising the quaternion qi ∈ H of
the rotation matrix Ri ∈ SO(3) and the camera translation
vector ti ∈ R3. As such, gi(pw) represents a linear world-
to-camera transformation pc = gi(pw) = Ripw + ti.

We use a camera calibration matrix Ki =[
f i, 0, px; 0, f

i, py; 0, 0, 1
]

∈ R3×3, with one degree
of freedom defined by the focal length f i ∈ R+. Following
common practice in SfM [44, 45], the principal point

coordinates px, py ∈ R are fixed to the center of the image.
To ensure strictly positive focal length f i, we represent it
as f i = exp(f̂ i), where f̂ i ∈ R is the quantity predicted by
the denoiser Dθ.

As such, the transformer Trans (Eq. (5)) outputs a tuple

of raw predictions
(
(f̂ i,qi, ti)

)N

i=1
which is converted (in

close-form) to a tuple of cameras x =
(
(Ki, gi)

)N
i=1

.

Tackling Coordinate Frame Ambiguity. Because our
training set T is constructed by SfM reconstructions [44],
the training poses are defined up to an arbitrary scene-
specific similarity transformation. To prevent overfitting to
the scene-specific training coordinate frames, we canonical-
ize the input before passing to the denoiser: we normalize
the extrinsics {ĝ1, ...ĝN} = Tj ∈ T , as relative camera
poses to a randomly selected pivot camera ĝ⋆ ∈ Tj . Fur-
thermore, in order to canonicalize the scale, we divide the
input camera translations by the median of the norms of the
pivot-normalized translations.

Additionally, we inform the denoiser about the pivot
camera by appending a binary flag pipivot ∈ {0, 1} to the
image features ψ(Ii) (Eq. (5)).

4. Experiments

We experiment on two real-world datasets, ablate the de-
sign choices of the model, and compare with prior work.
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Figure 5: Pose estimation accuracy on CO3Dv2. Metrics: ARE,ATE,RRE,RTE (y-axes, higher-better) at varying
thresholds @τ as a function of the number of input frames (x-axes). RelPose does not predict camera translation and hence
is omitted in the corresponding figures.

Datasets. We consider two datasets with different statis-
tics. The first is CO3Dv2 [40] containing roughly 37k turn-
table-like videos of objects from 50 MS-COCO categories
[23]. The dataset provides cameras automatically anno-
tated by COLMAP [46] using 200 frames in each video.
Secondly, we evaluate on RealEstate10k [64] which com-
prises 80k YouTube clips capturing the interior and exterior
of real estate. Its camera annotations were auto-generated
through ORB-SLAM 2 [35], a refinement with bundle ad-
justment, and further filtering. We use the same training set
as in [57], i.e. 57k training scenes and as some baselines are
time-consuming, a smaller test set of 1.8k videos randomly
selected from the original 7K videos. Naturally, we always
test on unseen videos.

Baselines and comparisons. We chose COLMAP [46],
one of the most popular SfM pipelines, as a dense-pose
estimation baseline. Besides the classic version leverag-
ing RANSAC-matched SIFT features, we also benchmark
COLMAP+SPSG which builds on SuperPoints [9] matched
with SuperGlue [42]. We also compare to RelPose [63]
which is the current state-of-the-art in sparse pose estima-
tion. Finally, to understand the impact of Geometry Guided
Sampling (GGS - Eq. (9)), PoseDiffusion w/o GGS imple-
ments the learned denoiser without GGS.

Training. We train the denoiser Dθ using the Adam opti-
mizer with the initial learning rate of 0.0005 until conver-
gence of Ldiff - learning rate is decayed ten-fold after 30
epochs. The latter takes two days on 8 GPUs. In each train-
ing batch, we randomly sample between 3-20 frames and
their cameras from a random scene of the training dataset.

Geometry-guided sampling. PoseDiffusion’s GGS lever-
ages the SuperPoint features [9] matched with SuperGlue
[42], where the Sampson error is clamped at ϵ = 10
(Sec. 3.3). To avoid spurious local minima, we apply GGS
to the last 10 diffusion sampling steps. During each step
t, we adjust the sampling mean by running 100 GGS iter-
ations. We observed improved sampling stability when the
guidance strength s (Eq. (8)) is set adaptively so that the
norm of the guidance gradient ∇p(I|x) does not exceed a
multiple α∥µt∥ (α = 0.0001) of the current mean’s norm.
Evaluation metrics. Accuracy of estimated rota-
tions R are evaluated with Absolute Rotation Error
ARE(R,R⋆) = 2−

1
2 ∥ lnR⋆R⊤∥F comprising the

angle between the ground truth/prediction R⋆/R. Ab-
solute Trajectory Error evaluates camera positions:
ATE(c, c⋆) = ∥c − c⋆∥, where c = −R⊤t are the optical
centers of the predicted and the ground truth cameras c and
c⋆ respectively. Note that, since SfM recovers poses up to
an arbitrary similarity transform, we first align them with
one single optimal similarity before evaluation. Following
common practice, we report ATE@τ/ARE@τ , i.e. the
percentage of cameras with ARE/ATE below a threshold
τ , and mATE/mRTE which averages ATE/RTE over a
range of thresholds.

The Relative Rotation Error RRE(Ri, Rj , R
⋆
i , R

⋆
j ) =

ARE(RiR
⊤
j , R

⋆
iR

⋆⊤
j ) compares the relative rotationRiR

⊤
j

from i-th to j-th camera to the ground truth R⋆
iR

⋆⊤
j . Sim-

ilarly, the Relative Translation Error RTE(tij , t
⋆
ij) =

arccos(t⊤ijt
⋆
ij/(∥tij∥∥t⋆ij∥)) evaluates the angle between

the predicted and ground-truth vector tij / t⋆ij pointing from
camera i to j. RRE/RTE are convenient since they are in-
variant to the absolute coordinate frame ambiguity.
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Figure 6: Pose estimation on RealEstate10k visualizing the cameras estimated given input images I (first row). Our
PoseDiffusion (2nd row) is compared to COLMAP+SPSG (3rd row), and the ground truth. Missing cameras indicate failure.
For better visualization, we display each scene from three different viewpoints.
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Figure 7: Pose estimation on RealEstate10k. Metrics ARE,ATE,RRE,RTE (y-axes, higher-better) at varying thresholds
@τ as a function of the number of input frames (x-axes).

4.1. Camera pose estimation

Object-centric pose. We first compare on CO3Dv2
where each scene comprises frames capturing a single ob-
ject from a variety of viewpoints with approximately con-
stant distance from the object. Fig. 5 contains quantitative
results while Fig. 4 illustrates example camera estimates.
PoseDiffusion significantly improves over all baselines in
all metrics in both the sparse and dense setting. Note that,
here ground truth cameras were obtained with COLMAP it-
self (but using more than 200 frames), likely still favour-
ing COLMAP reconstructions. Importantly, removing GGS
(PoseDiffusion w/o GGS) leads to a drop in performance for

tighter accuracy thresholds across all metrics. This clearly
demonstrates that GGS leads to more accurate camera esti-
mates. The latter also validates the accuracy of our intrin-
sics since they are an important component of GGS.

Furthermore, we compare to more baseline methods
in Tab. 2. We first explore the performance of Glob-
alSfM [33]1. Different from the more popular incremen-
tal SfM framework (e.g., COLMAP), GlobalSfM solves
the optimization problem for all cameras simultaneously
and may show better performance in certain scenarios.
PixSfM [24] enhances the COLMAP framework with deep

1We use the implementation of GlobalSfM [33] from OpenMVG [34]
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Method PoseReg Ours w/o GGS PoseReg+GGS Ours

mRRE 56.7 77.3 59.3 85.0
mRTE 59.8 73.2 63.0 83.1

Table 1: Pose regression ablation comparing a diffusion-
free pose regressor PoseReg (with/without GGS) to our
PoseDiffusion on CO3Dv2 with the frame number of 20.

Method COLMAP Global PixSfM [24] Direction RelPose Ours Ours+SPSG SfM [33] Net [7] w/o GGS
mRRE 34.6 32.7 36.3 55.7 58.9 77.8 82.4
mRTE 22.9 24.8 25.0 48.1 N/A 73.0 81.6

RRE@15 31.6 29.3 33.0 53.0 57.1 81.2 85.4
RTE@15 22.5 23.9 24.1 42.9 N/A 72.8 83.7

Table 2: Comparison to more baselines on CO3Dv2, with
the frame number of 10.

learning components such as featuremetric refinement. Di-
rectionNet [7] solves the camera pose estimation prob-
lem by estimating discrete distributions over the 5D rel-
ative pose space, in a way similar to RelPose. Overall
we can observe that in the sparse setting (the number of
frames is 10), the methods based on classic SfM frame-
work show similar performance. This observation holds
across modelling choices, such as incremental (COLMAP),
global (GlobalSfM), or deep learning-based components
(PixSfM). Recent deep learning methods (DirectionNet and
RelPose) achieve higher accuracy. Our proposed PoseDif-
fusionshows much better performance in every metric, even
without GGS.
Scene-centric pose. Here, we reconstruct camera poses in
free-form in/outdoor scenes of RealEstate10k which, histor-
ically, has been the domain of traditional SfM methods. We
evaluate quantitatively in Fig. 7 and qualitatively in Fig. 6.
PoseDiffusion significantly outperforms all baselines in all
metrics. Here, the comparison to COLMAP is fairer than
on CO3Dv2, as RealEstate10k used ORB-SLAM2 [36] to
obtain the ground-truth cameras.
Importance of diffusion. To validate the effect of diffu-
sion model, we also provide the PoseReg baseline, which
uses the same architecture and training hyper-parameters
as our method but directly regresses poses. PoseReg is
strongly inferior to us in Tab. 1. Moreover, without the
iterative refinement of our diffusion model, the gain of ap-
plying GGS to PoseReg (PoseReg+GGS) is limited.
Generalization. We also evaluate the ability of different
methods to generalize to different data distributions. First,
following RelPose [63], we train on a set of 41 training cat-
egories from CO3Dv2, and evaluate on the remaining 10
held-out categories (c.f. Tab. 3). Our method outperforms
all baselines indicating superior generalizability.

Moreover, we evaluate a significantly more difficult sce-
nario: transfer from CO3Dv2 to RealEstate10k. This setting

Method mARE mATE mRRE mRTE
# frames 3 10 20 3 10 20 3 10 20 3 10 20

CO3Dv2 Seen → Unseen Categories
COLMAP 35.8 48.0 57.2 35.9 38.0 48.8 32.3 45.8 61.5 12.0 28.6 48.9

COLMAP+SPSG 34.7 47.9 67.8 32.7 36.4 62.3 33.4 46.3 73.2 16.8 28.5 64.4
RelPose 38.1 50.3 50.7 - - - 45.2 54.7 57.0 - - -

Ours w/o GGS 46.7 62.1 62.6 78.0 59.9 58.8 65.0 65.0 65.8 55.3 56.1 56.9
Ours 56.0 66.0 69.5 79.2 65.0 65.6 66.8 70.8 74.0 62.0 66.1 68.2

CO3Dv2 → RealEstate10k
COLMAP 58.5 59.0 59.0 65.6 66.1 69.4 83.0 86.3 87.5 16.3 33.0 52.2

COLMAP+SPSG 62.2 70.0 69.2 72.1 75.7 78.6 85.7 91.2 91.8 29.8 55.4 63.6
RelPose 31.3 35.2 36.9 - - - 65.4 66.1 65.9 - - -

Ours w/o GGS 36.9 41.3 41.1 74.3 66.1 64.3 73.9 71.6 70.8 20.3 20.5 20.2
Ours 64.6 66.3 68.0 78.3 76.0 71.6 80.2 82.5 84.7 47.7 55.6 57.8

Table 3: Generalization. Performance on unseen cate-
gories of CO3Dv2 (top), and when trained on CO3Dv2 and
tested on RealEstate10k (bottom).

# frames RelPose COLMAP+SPSG Ours Target

10

20

50

Figure 8: Synthesized novel views. NeRF trained with
camera poses estimated by various methods. This metric
is more fair as it does not rely on GT pose annotations by
another method.

poses a considerable difficulty: CO3Dv2 predominantly
contains indoor objects with circular fly-around trajectories,
RealEstate10k mainly comprises outdoor scenes and linear
fly-through camera motion (see Figs. 4 and 6). Surpris-
ingly, our results are comparable to COLMAP (and better
than RelPose). If we further fine-tune the Co3D model on
another dataset TartanAir [56] (which also provides flying-
through trajectories) and then transfer to RealEstate10k,
a significant generalization ability improvement can be
observed, e.g., mRRE on RealEstate10k improved from
36.9% to 60.7% (frames=3), without GGS..

4.2. Novel-view synthesis.

To evaluate the quality of the camera pose prediction for
downstream tasks, we train NeRF models using predicted
camera parameters and measure the RGB reconstruction er-
ror in novel views. Note that, as opposed to the camera pose
evaluation on CO3Dv2, here, we fairly evaluate against un-
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Method # frames
10 20 50

RelPose [63]⋆ 21.33 23.12 25.09
Ours + GT Focal Length 24.72 26.58 28.61

COLMAP+SPSG 15.78 25.17 28.66
Ours 24.37 26.96 28.53

Table 4: Novel View Synthesis. PSNR for NeRFs [32]
trained on CO3Dv2 using cameras estimated by various
methods. RelPose ⋆ does not predict translation vectors and
focal lengths, and uses the ground truth here instead.

biased image ground truth. We generate a dataset of 10, 20,
and 50 frames for 50 random sequences of CO3Dv2. Each
sequence contains 4 validation frames with the remaining
ones used to train the NeRF. We report PSNR averaged
over all validation frames as an indirect measure of camera
pose accuracy. Furthermore, the experiment also evaluates
the accuracy of the predicted intrinsics (focal lengths) since
these are an inherent part of the NeRF’s camera model sig-
nificantly affecting the rendering quality.

In Tab. 4, our method outperforms COLMAP+SPSG,
demonstrating the better suitability of our predicted cam-
eras for NVS. Moreover, Ours + GT Focal Length, which
replaces the predicted focal lengths with the ground truth,
is perfectly on par with Ours, signifying the reliability of
our intrinsics. Fig. 8 provides the qualitative comparison.
Execution time. Our method without GGS typically takes
around 1 second for inference on a sequence of 20 frames,
and enabling GGS increases the execution time to 60-90
seconds. GGS is currently unoptimized (a simple for loop
in Python), compared to common C++ implementations for
SfM methods which can be adopted here. It has significant
speed-up potential.

5. Conclusion
This paper presents PoseDiffusion, a learned camera es-

timator enjoying both the power of traditional epipolar ge-
ometry constraint and diffusion model. We show how the
diffusion framework is ideally compatible with the task of
camera parameter estimation. The iterative nature of this
classical task is mirrored in the denoising diffusion formula-
tion. Additionally, point-matching constraints between im-
age pairs can be used to guide the model and refine the final
prediction. In our experiments, we improve over traditional
SfM methods such as COLMAP, as well as the learned ap-
proaches. We are able to show improvements regarding the
pose prediction accuracy as well as on the novel-view syn-
thesis task, which is one of the most popular current ap-
plications of COLMAP. Finally, we are able to demonstrate
that our method can overcome one of the main limitations of
learned methods: generalization across datasets, even when
trained on a dataset with different pose distributions.
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